Section 6 ### **Quality Assurance/Quality Control** In field sampling with the dilution sampling system, the following quality control procedures were implemented: - A leak check of the dilution sampling system was performed before field testing was initiated; - Pitot tubes and meter boxes were calibrated; - The analytical balance(s) were calibrated; - Flow control collection devices for the canisters were calibrated using a primary flow standard; - Multipart forms recording field conditions and observations were used for canisters and carbonyl samples; and - Strict chain of custody documentation for all field samples was maintained. Field sampling equipment quality control requirements that were met in the course of preparing for the field test and execution of testing activities are summarized in Table 6-1. Strict chain of custody procedures were followed in collecting and transporting samples and sampling media to and from the field sampling location. Sample substrates (filters, denuders, PUF canister, DNPH cartridges) were prepared in advance in accordance with the number and types of samples designated in the sampling matrix of the approved field test plan. Clean SUMMA® collection canisters and DNPH cartridges used to collect carbonyl compounds were prepared and supplied by ERG. The PUF, XAD-4®, denuder, and PM-2.5 sampling substrates were prepared and supplied by EPA. Chain of custody forms (Figure 6-1) were **Table 6-1. Field Sampling Equipment Quality Control Measures** | Equipment | Effect | Acceptance
Criteria | Criteria
Achieved? | |--|--|---------------------------------|-----------------------| | Orifice meters (volumetric gas flow calibration) | Ensures the accuracy of flow measurements for sample collection | ± 1% | Yes | | Venturi meters (volumetric gas flow calibration) | Ensures the accuracy of flow measurements for sample collection | ± 1% of
reading | Yes | | Flow transmitter (Heise gauge with differential pressure) | Ensures the accuracy of flow measurements for sample collection | $\pm 0.5\%$ of range | Yes | | Analytical Balances | Ensures control of bias for all project weighing | Calibrated with Class S weights | Yes | | Thermocouples | Ensures sampler temperature control | ±1.5 ³ C | Yes | | Relative humidity probes | Ensures the accuracy of moisture measurements in the residence chamber | ± 2% relative humidity | Yes | | Sampling equipment leak check and calibration (before each sampling run) | Ensures accurate measurement of sample volume | 1% | Yes | | Sampling equipment field blanks | Ensures absence of contamination in sampling system | < 5.0% of sample values | Yes | Reference. EPA Quality Assurance Project Plan - Source Sampling for Fine Particulate Matter (U.S. EPA, 2001). | DERG | | |------------------|-------------| | FASTERN RESEARCH | GROUP, INC. | ## **Chain of Custody Record** | FASTERN RESEARCH GROUI | P, INC. | | | | | | | | | | | | | | Page | | _ of | |--|----------|----------|-------------|-----------|------|------------|------|------|--------|------|-----|-------|--------|--------------|------------------------|------|------| | PROJECT | | | | | | | | | ANAL | YSES | | | | | | | | | SITE | | | | | | ERS | | | | | | | | | | | | | COLLECTED BY (Signatur | e) | | | | Č. | CONTAINERS | | | | | | | | | 0444154 | 10 | | | FIELD SAMPLE I.D. | SAMPL | E MATRIX | | DATE/TIME | S | 00 | | | | | | | REMARK | S | SAM ID N
(For lab u | _ | | | | | | | | | | | | | | | | | | | _ | 1 | | T | | | REMARKS: | | | | | | | | | | | | | | RELIN
BY: | QUISHED | DATE | TIME | | RECEIVED BY: | DATE | TIME | RELINQUISHE | D BY: | DATE | TIME | | RECE | IVED E | SY: | DA | ATE | TIME | RELIN
BY: | QUISHED | DATE | TIME | | | <u> </u> | | <u>!</u> | <u>'</u> | L | AB US | E ON | ILY | | | 1 | | | | | | | | RECEIVED FOR LABORATORY BY: DATE TIME AIRBILL NO. OF | | | OPENE | D BY | | | | DATE | | TIME | Е Т | EMP°C | SEAL# | Figure 6-1. ERG chain of custody form. started when the sampling media were prepared; each sample substrate was assigned a unique identification number by the laboratory supplying the substrates. Sample identification numbers include a code to track: - Source type; - Test date; - Sampler type; - Substrate type; - Sampler chamber (i.e., dilution chamber or residence chamber); - Sampler port; - Lane/leg; - Position; and - Holder number. For samples to be analyzed in the EPA laboratories, whole sampling arrays were assembled by EPA, assigned a unique tracking number, and used for sample collection. Sample collection arrays were recovered in the field as a complete unit and transferred to the EPA laboratory for disassembly and analysis. After collection, samples were transported to the analysis laboratories by ERG, with careful documentation of sample collection and chain of custody records for the samples being transported. Samples were stored in a secure area until they were transported to the laboratories performing analyses. #### **Carbonyl Compound Analysis** Quality control criteria for the carbonyl analysis performed by ERG are shown in Table 6-2. Supporting analytical data are a part of the project file at ERG. Table 6-2. Carbonyl Analysis: Quality Control Criteria | Parameter | Quality Control
Check | Frequency | Acceptance
Criteria | Corrective
Action | Criteria
Achieved
? | |---------------------------|--|--|--|--|---------------------------| | HPLC Column
Efficiency | Analyze second
source QC sample
(SSQC) | At setup and 1
per sample
batch | Resolution between acetone and propionaldehyde ≥ 1.0 Column efficiency > 500 plates | Eliminate dead
volume,
backflush, or
replace
column;
repeat analysis | Yes | | Linearity Check | Analyze 5-point calibration curve and SSQC in triplicate | At setup or
when
calibration
check does not
meet
acceptance
criteria | Correlation coefficient ≥0.999, relative error for each level against calibration curve ± 20% or less Relative Error | Check
integration, re-
integrate or re-
calibrate | Yes | | | | | Intercept
acceptance should
be ≥10,000 area
counts/compound;
correlates to 0.06
mg/mL | Check
integration, re-
integrate or re-
calibrate | Yes | | Retention time | Analyze calibration midpoint | Once per 10 samples | Acetaldehyde, Benzaldehyde, Hexaldehyde within retention time window established by determining 3 σ or ± 2% of the mean calibration and midpoint standards, whichever is greater | Check system
for plug,
regulate
column
temperature,
check gradient
and solvents | Yes | | Calibration Check | Analyze midpoint standard | Once per 10 samples | 85-115% recovery | Check integration, recalibrate or reprepare standard, reanalyze samples not bracketed by acceptable standard | Yes | | | | | | | (Continued) | Table 6-2. (Continued) | Parameter | Quality Control
Check | Frequency | Acceptance
Criteria | Corrective
Action | Criteria
Achieved
? | |---|-------------------------------|--|--|---|---------------------------| | Calibration
Accuracy | SSQC | Once after calibration in triplicate | 85-115% recovery | Check
integration; re-
calibrate or re-
prepare
standard, re- | Yes | | | Analyze 0.1 μg/mL
standard | Once after calibration in triplicate | ± 25% difference | analyze samples not bracketed by acceptable standard | | | System Blank | Analyze
acetonitrile | Bracket sample
batch, 1 at
beginning and 1
at end | Measured concentration ≤ 5 x MDL | Locate contamination and document levels of contamination in file | Yes | | Duplicate
Analyses | Duplicate Samples | As collected | ± 20% difference | Check integration; check instrument function; reanalyze duplicate samples | Yes | | Replicate
Analyses | Replicate injections | Duplicate samples only | ≤ 10% RPD for
concentrations
greater than 1.0
µg/mL | Check integration, check instrument function, reanalyze duplicate samples | Yes | | Method
Spike/Method
Spike Duplicate
(MS/MSD) | Analyze MS/MSD | One MS/MSD per 20 samples | 80-120% recovery for all compounds | Check calibration, check extraction procedures | Yes | #### **Concurrent Air Toxics/Speciated Nonmethane Organic Compound Analysis** The analytical system performing the concurrent analysis is calibrated monthly and blanked daily prior to sample analysis. A quality control standard is analyzed daily prior to sample analysis to ensure the validity of the current monthly response factor. Following the daily quality control standard analysis and prior to the sample analysis, cleaned, dried air from the canister cleaning system is humidified and then analyzed to determine the level of organic compounds present in the analytical system. Upon achieving acceptable system blank results -- less than or equal to 20 ppbC -- sample analysis begins. Ten percent of the total number of samples received are analyzed in replicate to determine the precision of analysis for the program. After the chromatography has been reviewed, the sample canister is returned to the canister cleaning laboratory to be prepared for subsequent sample collection episodes or sent to another laboratory for further analysis. Quality control procedures for the Air Toxics and SNMOC analyses are summarized in Table 6-3. # PM Mass Measurements, Elemental Analysis, Water-Soluble Ion Analysis, and GC/MS Analysis Quality control criteria for EPA analyses (PM mass, elemental analyses, ion chromatography analysis, and GC/MS analysis) are summarized in Tables 6-4 through 6-7; supporting data are included in the project file in the EPA laboratory. Table 6-3. Quality Control Procedures for the Concurrent Analysis for Air Toxics and $\overline{\text{SNMOC}}$ | Quality Control Check | Frequency | Acceptance Criteria | Corrective
Action | Criteria
Achieved? | |---|--|---|--|-----------------------| | Air Toxics Analysis | | | | | | BFB Instrument Tune
Check | Daily prior to calibration check | Evaluation criteria in data system software; consistent with Method TO-15 | Retune mass
spectrometer;
clean ion source
and quadrupoles | Yes | | Five-point calibration bracketing the expected sample concentration | Following any major change, repair, or maintenance if daily quality control check is not acceptable. Calibration is valid for six weeks if calibration check criteria are met. | RSD of response factors $\leq 30\%$
Relative Retention
Times (RRTs) for target peaks ± 0.06
units from mean RRT | Repeat individual
sample analysis;
repeat linearity
check; prepare
new calibration
standards and
repeat analysis | Yes | | Calibration check using mid-point of calibration range | Daily | Response factor ≤ 30% bias from calibration curve average response factor | Repeat calibration check; repeat calibration curve | Yes | | System Blank | Daily following tune check and calibration check | 0.2 ppbv/analyte or MDL, whichever is greater Internal Standard (IS) area response ± 40% and retention time ± 0.33 min of most recent calibration check | Repeat analysis
with new blank;
check system for
leaks,
contamination;
re-analyze blank. | Yes | | Laboratory Control
Standard (LCS) | Daily | Recovery limits 70% - 130% IS Retention Time ± 0.33 min of most recent calibration | Repeat analysis; repeat calibration curve. | Yes | | Replicate Analysis | All duplicate field samples | <30% RPD for compounds >5xMDL | Repeat sample analysis | Yes | | Samples | All samples | IS RT \pm 0.33 min of most recent calibration | Repeat analysis | Yes | | | | | | (Continued) | Table 6-3. (Continued) | Quality Control Check | Frequency | Acceptance Criteria | Corrective
Action | Criteria
Achieved? | |--|------------------------------------|--|---|-----------------------| | SNMOC Analysis | | | | | | System Blank Analysis | Daily, following calibration check | 20 ppbC total | Repeat analysis;
check system for
leaks; clean
system with wet
air | Yes | | Multiple point calibration
(minimum 5); propane
bracketing the expected
sample concentration
range | Prior to analysis and monthly | Correlation coefficient $(r^2) \ge 0.995$ | Repeat individual
sample analysis;
repeat linearity
check; prepare
new calibration
standards and
repeat | Yes | | Calibration check: midpoint of calibration curve spanning the carbon range (C ₂ -C ₁₀) | Daily | Response for selected
hydrocarbons
spanning the carbon
range within ± 30%
difference of
calibration curve slope | Repeat calibration check; repeat calibration curve. | Yes | | Replicate analysis | All duplicate field samples | Total NMOC within ± 30% RSD | Repeat sample analysis | Yes | Table 6-4. PM Mass Measurements: Quality Control Criteria | Parameter | Quality Control
Check | Frequency | Acceptance
Criteria | Corrective
Action | Criteria
Acheived? | |--|---|--|---------------------------------------|--|-----------------------| | Deposition on Filter during Conditioning | Analyze
Laboratory Filter
Blank | Bracket sample
batch, 1 at
beginning and 1
at end | Mass within ± 15mg of previous weight | Adjust mass for deposition | Yes | | Laboratory
Stability | Analyze
Laboratory Control
Filter | Bracket sample
batch, 1 at
beginning and 1
at end | Mass within ± 15mg of previous weight | Adjust mass to
account for
laboratory
difference | Yes | | Balance Stability | Analyze Standard
Weights | Bracket sample
batch, 1 at
beginning and 1
at end | Mass within ± 3mg of previous weight | Perform internal calibration of balance, perform external calibration of balance | Yes | Table 6-5. Elemental Analysis: Quality Control Criteria | Parameter | Quality Control
Check | Frequency | Acceptance
Criteria | Corrective
Action | Criteria
Achieved? | |---------------------------------|---------------------------|-------------------|--|----------------------|-----------------------| | Performance
Evaluation check | Analyze Monitor
Sample | Once per
month | ≤ 2% change in
each element from
previous
measurement | Recalibrate | Yes | Table 6-6. Water-Soluble Ion Analysis: Quality Control Criteria | Parameter | Quality Control
Check | Frequency | Acceptance
Criteria | Corrective
Action | Criteria
Achieved? | |-----------------------|-----------------------------------|---|--|---|-----------------------| | Linearity
Check | Analyze 4-point calibration curve | At setup or
when
calibration
check does not
meet acceptance
criteria | Correlation coefficient ≥0.999 | Recalibrate | Yes | | System Dead
Volume | Analyze water | Bracket sample
batch, 1 at
beginning and 1
at end | Within 5% of previous analysis | Check system
temperature,
eluent, and
columns | Yes | | Retention
Time | Analyze standard | At setup | Each ion within ± 5% of standard retention time | Check system temperature and eluent | Yes | | Calibration
check | Analyze one standard | Once every 4-
10 samples | 85-115% recovery | Recalibrate or
re-prepare
standard, re-
analyze sample
not bracketed
by acceptable
standard | Yes | | System Blank | Analyze HPLC grade water | Bracket sample
batch, 1 at
beginning and 1
at end | No quantifiable ions | Re-analyze | Yes | | Replicate
Analyses | Replicate Injections | Each sample | ≤ 10% RPD for
concentrations
greater than
1.0mg/L | Check
instrument
function, re-
analyze samples | Yes | Table 6-7. Quality Control Procedures for Gas Chromatography-Mass Spectrometry Analysis of Semivolatile Organic Compounds. | Quality Control Check | Frequency | Acceptance Criteria | Corrective
Action | Criteria
Achieved? | |--|---|--|--|-----------------------| | Mass spectrometer instrument tune check | Daily prior to calibration check | Mass assignments m/z = 69, 219, 502 (\pm 0.2)
Peak widths = 0.59-0.65
Relative mass
abundances = 100 %
(69); \geq 30 % (219);
\geq 1% (502). | Retune mass
spectrometer;
clean ion
source | Yes | | Five-point calibration bracketing the expected concentration range | Following maintenance
or repair of either gas
chromatograph or mass
spectrometer or when
daily quality control
check is not acceptable | Correlation coefficient
of either quadratic or
linear regression ≥ 0.999 | Check
integration, re-
integrate or
recalibrate | Yes | | Calibration check using midpoint of calibration range | Daily | Compounds in a representative organic compound suite $> 80\%$ are $\pm 15\%$ of individually certified values. Values $\geq 20\%$ are not accepted. | Repeat
analysis,
repeat
calibration
curve | Yes | | System Blank | As needed after system maintenance or repair | Potential analytes ≤ detection limit values | Repeat
analysis;
check system
integrity.
Reanalyze
blank | Yes | | Retention time check | Daily | Verify that select
compounds are within
± 2% of established
retention time window | Check inlet
and column
flows and the
various
GC/MS
temperature
zones | Yes |